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Abstract. We consider the problem of lattice trails, introduced by Malakis. We prove the 
existence of a finite connective constant, and establish a result for the growth of n-step 
trails I, analogous to the best known result for self-avoiding walks, t ,  = A n  exp(O(&)). 
For the honeycomb ( d  = 2) and Lave’s lattice (d  = 3) we establish a counting theorem, 
from which we ca_n deduce the exact value of the connective constant A for the honeycomb 
lattice, A’ = 2+42.  Further, it follows that the trail problem is in the same universality 
class as the self-avoiding walk problem for those lattices. An exact amplitude relation 
between trails and self-avoiding walks, and between dumb-bells and trails and self-avoiding 
walks is established. 

The non-existence of a counting theorem for arbitrary lattices is established. An 
inequality for the triangular lattice connective constant is proved. A high-density expansion 
for A for the d-dimensional hybercubic lattice is also obtained. We argue that, contrary 
to recent suggestions, the model is in the same universality class as the self-avoiding walk 
model. 

1. Introduction 

In 1975 Malakis introduced the problem of lattice trails, (discussed in more detail in 
Malakis 1976) which is one of many interesting generalisations of the traditional 
self-avoiding walk (SAW) problem. A trail on a lattice is a connected path such that 
no bond may be traversed more than once. The SAW problem may be defined by 
changing ‘bond’ to ‘site’ in the above definition. This observation immediately suggests 
that a suitable bond to site transformation would map the trails problem into the SAW 

problem, and indeed, as Malakis pointed out, there exists a homomorphism between 
trails on a lattice L and self-avoiding walks on the covering lattice L‘. This would 
suggest that the two problems belong to the same universality class, but this conclusion 
is by no means inevitable as the covering lattice$ of a regular lattice is not regular§, 
and it is not certain that SAW’S on non-regular lattices belong to the same universality 
class as their regular lattice-based counterparts. 

t A preliminary account ofthis work was presented at the 15th Statphys. Conference, University of Edinburgh, 
July 1983. 
$ W e  define covering lattice as follows: ( i )  to every bond of lattice L there corresponds a vertex of the 
covering lattice L‘ and (ii) two vertices of Lc are connected by a bond if the corresponding bonds of L 
meet at a vertex (in L). 
6 A regular lattice is defined as one constructed by covering the plane with identical tiles. Thus for example, 
the covering lhttice of the square lattice is not regular, as it is tiled with two distinctly shaped tiles. 
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Recently Zhou and Li (1984) have raised the possibility that the trails problem 
belongs to a different universality class from that of the SAW problem, basing their 
suggestion both on series analysis and on position-space RG arguments. 

In this paper we produce a range of exact results that argue to the contrary. In a 
subsequent paper we intend to present exact enumeration data that also support the 
conclusions of this paper. 

2. Existence of a connective constant 

We can follow the argument of Hammersley (1957) to prove the existence of a 
connective constant for trails. If t , ( c , )  denotes the number of n-step trails (SAW'S) on 
a particular lattice, the submultiplicative property t,,, s t,t, is obvious, from which 
follows the result that -a< inf,,o In( t,,)/n = In( t , ) /  n < CO. Writing n = rnp + q 
and applying the submultiplicative inequality above repeatedly gives t, S ( t , )Pt , ,  from 
which we can prove limn+= sup ln(t,)/n s l n ( A ) ,  from which follows the result 

In( t,)/n = ln(A) and further, that ln(A) s In( t , ) /  n. If p denotes the correspond- 
ing connective constant for SAW'S, the fact that c, s t, implies that p s A for any given 
lattice. Further, it is clear that A S IT = q - 1 where q is the lattice coordination number. 

Further, the proof of Hammersley and Welsh (1962) that c, = p n  exp(O(&)) 
may be re eated mutatis mutandis for trails, giving the equivalent result t ,  = 

behaviour in which the correction term O ( J n )  is replaced by O(ln n). In § 3 we show 
that for one regular lattice, the honeycomb lattice, p = A = (2 

A "  exp(O( ,iE n)) .  In both cases these rigorous_results fall short of the generally accepted 

3. Counting theorems 

One of the most useful exact results for the SAW problem is the counting theorem due 
to Sykes (1961), who showed that the number of SAW'S could be related to the number 
of polygons, dumb-bells and theta-graphs (where we denote these by p,, d, and 8, 
respectively, with the subscript n referring to the number of steps). Sykes proved the 
result 

c, - 2uc,-, + u ~ c , - ~  = 2( n - l)pn-,  - 2np, + 8d, + 8e, + 120, (3.1) 

where U = q - 1 and q is the lattice coordination number. This theorem has proved 
most useful in extending the enumerations of {c,} by counting the far less numerous 
graphs pn,  d ,  and e,. Guttmann and Whittington (1978) and Hammersley (1961) have 
shown that the classes of graph appearing on the RHS of (3.1) all have the same 
connective constant as do the SAW'S, and Guttmann and Whittington also showed that 
the critical exponent for the dumb-bell generating function was the same as that for 
the chain generating function, while exponents of other generating functions for graphs 
appearing on the RHS of (3.1) were less than the corresponding dumb-bell exponent. 
Thus the RHS of (3.1) is dominated by the contribution of dumb-bells. 

We have followed Sykes' procedure for the trails problem, and find, for lattices 
with coordination number 3, i.e. the (regular) two-dimensional honeycomb lattice and 
the (non-regular) three-dimensional Lave's lattice, the following counting theorem 
holds: 

( 3 . 2 )  t ,  -4t,-,+4t,-2= -2(n - 1)pn-,+32d,_,+488,-,. 
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The absence of figure-eights is due to the lattice topology. The proof parallels that of 
Sykes (1961). From the existence of these results we can immediately derive four 
important conclusions: 

(i) The connective constant A is equal to its counterpart p for trails. For the 
honeycomb lattice Nienhuis ( 1982, 1984) has shown (non-rigorously, but almost 
certainly correctly) that p = (2+J2)"'. For Lave's lattice Leu (1969) estimated p = 
1.956. 

(ii) Since the dumb-bell term on the RHS of (3.2) dominates this expression, as it 
does for the SAW problem, it follows that the critical exponent for honeycomb lattice 
trails is the same as that for honeycomb lattice SAW'S. Nienhuis has shown (again 
non-rigorously) this exponent to be y = 43/32. That is, we can write the asymptotic 
relations c, - Cpnny- ' ,  t, - TA%'-' with p = A .  

( i i i)  Comparison of (3.1) and (3.2) gives the amplitude relations T p 2  = 4C, where 
T and C are defined abgve. Thus for the honeycomb lattice we have the exact amplitude 
relation T = 4C/(2+42) ,  and a similar approximate relation for Lave's lattice. 

(iv) Equation (3.1) gives an exact relation between the dumb-bell amplitude D, 
defined through d ,  - Dpnny-', and the walk amplitude C, which is 

D = $ C ( l  - 2 a / p + a 2 / p 2 ) .  (3.3) 

This holds for any lattice for which Sykes' chain counting theorem applies, unlike 

Note that combining (3.1) and (3.2) yields, for the honeycomb lattice, the simple 

Turning now to the problem of finding a chain generating function for an arbitrary 

the first three results. 

result t,, = 4C2,-2 and f 2 n - I  = 4C2"-3 -4(n - 1 ) ~ , , - ~ ,  

lattice, we find the following results: 

t o =  I 

t i  = a +  1 

t , = a ( a + l )  

t3 = a2(a+ I )  

f 4  = a3( a + 1 ) - 6p3 

t ,  = a"(a + 1 ) - 6p3(3a - 2) - 8p4 

f 6 =  C 5 ( a +  1) -6p3(5u2 -4U) - 8p4(3a - 2) - lop5 

(3.4) 

These may be combined to give 
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These results were derived following the method of Sykes (1961) in his derivation of 
the SAW chain counting theorem. The terms on the RHS refer to specific graphs tabulated 
in Domb (1960), who also gives their count for various lattices. 

From (3.5) and (3.6) we see a fundamental difference in structure between these 
results for lattice trails and  the corresponding results for SAW’S. For SAW’S, only four 
types of graph enter the RHS of the chain counting theorem. For trails, it appears that 
the number of graph types grows without limit with increasing n. We have been unable 
to derive, o r  even conjecture, the general form of the RHS, and hence we have no trail 
counting theorem for general lattices. 

This observation that the number of types of graph steadily increases is of consider- 
able significance however, for the following reason: each graph type entering to date 
can be shown to have the same connective constant as that of SAW’S. Hence if the RHS 

of the trail counting theorem contained a finite number of graph types (as it does for 
the honeycomb and Lave’s lattice) it would follow that the two problems had the same 
connective constants. As we shall subsequently prove that this is not generally the 
case, it follows that in general, the number of graph types on the RHS of the trail 
counting theorem should increase without bound. 

This then raises the possibility that the trail and SAW problem might belong to 
different universality classes for those lattices for which no counting theorem exists, 
while belonging to the same universality class in those cases (lattices of coordination 
number 3) for which a counting theorem can be found. The following argument 
suggests that this is not true in general. As pointed out by Malakis (1976) there is a 
1 : 1 mapping from the set of n-step trails on the L lattice onto the set of (n - 1)-step 
SAW’S on the Manhattan lattice. Recent studies (Guttmann 1983) provide strong 
evidence that the SAW problem on the Manhattan lattice is in the same universality 
class as the SAW problem on the square lattice. This provides strong evidence that the 
trails problem on the L lattice is also in the same universality class. The counting 
theorem for trails on the L lattice is of the same form as for the square lattice, that is, 
with a steadily increasing number of graph types on the RHS. Thus we conciude that 
this feature is not sufficient to change the universality class. 

In § 4 we show that the two problems have different connective constants on the 
triangular lattice. 

4. Triangular lattice 

For the SAW problem, Guttmann and Sykes (1973) proved the following inequality 
between the connective constants on the honeycomb lattice (pH) and triangular lattice 
(,&TI : 

PuzH~p:/(I  +PT).  (4.1) 
This result came from the geometrical construction in which each two-step segment 
of the even-length walks on the honeycomb lattice is replaced by the corresponding 
one or  two-step walk in the surrounding triangular lattice, as derived from the star- 
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triangle transformation. This substitution led to certain forbidden paths on the 
triangular lattice, from which the inequality follows. 

Sykes has pointed out that for the trails problem on this pair of lattices, the opposite 
situation applies. That is, all derived paths on the triangular lattice are allowed, but 
certain trails on the triangular lattice are not derivable from the honeycomb lattice in 
this way. This observation then leads to the inequality 

(4.2) G A:/ ( 1 -k AT). 

Using the result proved in the previous section, that A H  = pH, the two equations above 
allow us t_o conclude that A T S p p  If equality holds, then from Nienhuis’ result 
p i  = 2 + 42 ,  we could conclude AT = pT = $2 + h + (14+ 8h)”2] = 4.2227 . . . . Given 
that the most recent estimate of pT is 4.15075 * 0.0003 (Guttmann 1984) it appears safe 
to conclude that equality does not hold, and  hence that A T >  4.227. . . > pT. 

5. Hypercubic lattices 

Following a suggestion by D S Gaunt, we have derived a ‘high-density’ expansion for 
the connective constant A on a general d-dimensional hypercubic lattice, following 
the method of Fisher and  Gaunt (1964). Writing equations (3 .5)  and (3.6) in the form 
t ,  - 2 ~ t , - ~  + = d,, we express d, in terms of U ( U  = 2d - 1 for hypercubic lattices) 
using the lattice constants given by Fisher and Gaunt. The only lattice constant we 
need which was not given explicitly by them is that of the figure-eight, P g h ,  for which 
we have (Sykes, private communication) 

From (3.5), (3.6), (5.1) and the constants given by Fisher and Sykes we find: 

d, =0,  n c 4  

d,/ qg4 = - u - ~  + f4 
d6/ 9U5 -f3 + 3 f 4  - 2U-’ 

d7/ qu6 = - 4 K 4 +  1 3 ~ - ~ - 9 ~ - ~  

d8/ qu’ = 

d$/ q a 8  = 

d l  I /  q a ”  = O( 

d ,  qcr’ I = O ( f 6 ) .  

-4u-4+21 u-5- 35u-6+  O( U-7) 

- 3 1 U-,+ 2 1 3 ~ - ~ + 0 ( u - ’ )  

d ,0 lqu9=  - 3  1 U- ,  + 6 7 ~ - ~ +  O(U-’) 

(5.2) 

From (5.2) we can obtain 

In( t,( d ) / q )  = ( n  - 1 )  In U - (2n - 9 ) K 3  - (4n - 3 3 ) ~ - ~ -  (30n - 3 1 2 ) ~ - ~ +  O ( U - ~ ) .  

Dividing by n and taking the limit n+m then gives the result 
(5.3) 

A ( d )  = U[ 1 - 2 ~ - ~  - 4 0 - - ~  - 3 0 8  + O( u - ~ ) ]  (5.4) 
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which should be compared to the corresponding result for SAW'S namely: 

p (  d )  = U [  1 - f2  - 2 f 3  - 1 1 u - ~  - 6 2 8  + O( U-. ' ) ] .  ( 5 . 5 )  

It appears from these expansions that, for d 2 2, A ( d )  > p (  d) .  However, the nature 
of these expansions is not well understood, though it is believed that they are asymptotic. 
Accordingly, it is probably only completely safe to conclude that A ( d )  > p ( d )  for some 
dimensionality. Assuming that these are asymptotic expansions, then stopping at the 
smallest term, we find A(2) -2.630 and A(3) -4.888. 

6. Conclusions 

The above study of the problem of lattice trails provides considerable evidence to 
suggest that the problem is in the same universality class as the self-avoiding walk 
problem. This is explicitly shown for one two-dimensional and one three-dimensional 
lattice. The remaining possibility, that the trails problem is in a different universality 
class for some lattices, is shown to be unlikely. 

For the honeycomb lattice, exact values for the connective constant, critical 
exponent and critical amplitude (in terms of that for the SAW problem) are found. 

For the triangular lattice, a connective constant inequality is found, from which it 
is argued that the connective constant is different from that of the SAW problem. 

For the d-dimensional hyperbubic lattice a high-density expansion is obtained, 
which also implies a difference between the connective constant for the trails problem 
and the SAW problem for these lattices. 

In a subsequent paper we intend to provide numerical evidence in support of these 
conclusions, as well as estimates of the various critical parameters. 
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